Energy balances for the collision of gravity currents of equal strengths

Author:

Dai AlbertORCID,Huang Yu-Lin,Wu Ching-SenORCID

Abstract

Collision of two counterflowing gravity currents of equal densities and heights was investigated by means of three-dimensional high-resolution simulations with the goal of understanding the flow structures and energetics in the collision region in more detail. The lifetime of collision is approximately $3 \tilde {H}/\tilde {u}_f$ , where $\tilde {H}$ is the depth of heavy and ambient fluids, and $\tilde {u}_f$ is the front velocity of the approaching gravity currents, and the lifetime of collision can be divided into three phases. During Phase I, $-0.2 \leqslant (\tilde {t}-\tilde {t}_c) \tilde {u}_f/\tilde {H} \leqslant 0.5$ , where $\tilde {t}$ is the time, and $\tilde {t}_c$ is the time instance at which the two colliding gravity currents have fully osculated, geometric distortions of the gravity current fronts result in stretching of pre-existing vorticity in the wall-normal direction inside the fronts, and an array of vertical vortices extending throughout the updraught fluid column develop along the interface separating the two colliding gravity currents. The array of vertical vortices is responsible for the mixing between the heavy fluids of the two colliding gravity currents and for the production of turbulent kinetic energy in the collision region. The presence of the top boundary deflects the updraughts into the horizontal direction, and a number of horizontal streamwise vortices are generated close to the top boundary. During Phase II, $0.5 \leqslant (\tilde {t}-\tilde {t}_c) \tilde {u}_f/\tilde {H} \leqslant 1.2$ , the horizontal streamwise vortices close to the top boundary induce turbulent buoyancy flux and break up into smaller structures. While the production of turbulent kinetic energy weakens, the rate of transfer of energy to turbulent flow due to turbulent buoyancy flux reaches its maximum and becomes the primary supply in the turbulent kinetic energy in Phase II. During Phase III, $1.2 \leqslant (\tilde {t}-\tilde {t}_c) \tilde {u}_f/\tilde {H} \leqslant 2.8$ , the collided fluid slumps away from the collision region, while the production of turbulent kinetic energy, turbulent buoyancy flux and dissipation of energy attenuate. From the point of view of energetics, the production of turbulent kinetic energy and turbulent buoyancy flux transfers energy away from the mean flow to the turbulent flow during the collision. Our study complements previous experimental investigations on the collision of gravity currents in that the flow structures, spatial distribution and temporal evolution of the mean flow and turbulent flow characteristics in the collision region are presented clearly. It is our understanding that such complete information on the energy budgets in the collision region can be difficult to attain in laboratory experiments.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3