Kinetic modelling of rarefied gas flows with radiation

Author:

Li QiORCID,Zeng Jianan,Huang Zemin,Wu LeiORCID

Abstract

Two kinetic models are proposed for high-temperature rarefied (or non-equilibrium) gas flows with internal degrees of freedom and radiation. One of the models uses the Boltzmann collision operator to model the translational motion of gas molecules, which has the ability to capture the influence of intermolecular potentials, while the other adopts the relaxation time approximations, which has higher computational efficiency. In our kinetic model equations, not only the transport coefficients such as the shear/bulk viscosity and thermal conductivity but also their underlying relaxation processes are recovered. The non-equilibrium dynamics of gas flow and radiation are tightly coupled, where the transport properties of gas molecules and photons are correlatively dependent. The proposed kinetic models are validated by the direct simulation Monte Carlo method in several non-radiative rarefied gas flows (e.g. the normal shock wave, Fourier flow, Couette flow and the creep flow driven by the Maxwell demon), and the experimental data of planar heat transfer and normal shock waves in nitrogen. Then, the rarefied gas flows with strong radiation are studied based on the kinetic models, not only in the above one-dimensional gas flows, but also in the two-dimensional radiative hypersonic flow passing a cylinder. The characteristics of heat transfer in the tightly coupled fields of gas and radiation are systematically investigated, particularly the influence of the non-equilibrium photon transport and their interactions with gas molecules are revealed. It is found that the radiation makes a profound contribution to the total heat transfer in radiative hypersonic flow at an intermediate photon Knudsen number.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3