Heat transfer, vapour diffusion and Stefan flow around levitating droplets near a heated liquid surface

Author:

Davis Jacob E.,Kabov Oleg A.,Zaitsev Dmitry V.,Ajaev Vladimir S.ORCID

Abstract

We consider a slowly condensing droplet levitating near the surface of an evaporating layer, and develop a mathematical model to describe diffusion, heat transfer and fluid flow in the system. The method of separation of variables in bipolar coordinates is used to obtain the series expansions for temperature, vapour concentration and the Stokes stream function. This framework allows us to determine temperature profiles and condensation rates at the surface of the droplet, and to calculate the upward force that allows the droplet to levitate. Somewhat counter-intuitively, condensation is found to be the strongest near the bottom of the droplet, which faces the hot liquid layer. The experimentally observed deviations from the classical law predicting the square of the radius to grow linearly in time are explained by the model. A spatially non-uniform phase change rate results in a contribution to the force not considered in previous studies, and comparable to droplet weight and the upward force calculated from the Stokes drag law. The levitation conditions are formulated accordingly, resulting in the prediction of levitation height as a function of droplet size without any fitting parameters. A simple criterion is formulated to define the parameter ranges in which levitation is possible. The results are in good agreement with the experimental data except that the model tends to slightly underpredict the levitation height.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3