Dynamics of mass polar spheroids during sedimentation

Author:

Nissanka KavindaORCID,Ma XiaoleiORCID,Burton Justin C.ORCID

Abstract

The dynamics of sedimenting particles under gravity are surprisingly complex due to the presence of effective long-ranged forces. When the particles are polar with a well-defined symmetry axis and non-uniform density, recent theoretical predictions suggest that prolate objects will repel and oblate ones will weakly attract. We tested these predictions using mass polar prolate spheroids, which are composed of 2 mm spheres glued together. We probed different aspect ratios ( $\kappa$ ) and centre of mass variations ( $\chi$ ) by combining spheres of different densities. Experiments were done in both quasi-two-dimensional (2-D) and three-dimensional (3-D) chambers. By optically tracking the motion of single particles, we found that the dynamics were well described by a reduced mobility matrix model that could be solved analytically. Pairs of particles exhibited an effective repulsion, and their separation roughly scaled as $(\kappa - 1)/\chi ^{0.39}$ , i.e. particles that were more prolate or had smaller mass asymmetry had stronger repulsion effects. In three dimensions, particles with $\chi >0$ were distributed more uniformly than $\chi =0$ particles, and the degree of uniformity increased with $\kappa$ , indicating that the effective 2-body repulsion manifests for a large number of particles.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3