Searching for the log law in open channel flow

Author:

Pirozzoli SergioORCID

Abstract

We carry out direct numerical simulations of flow in a plane open channel at friction Reynolds number up to ${{Re}}_{\tau } \approx 6000$ . We find solid evidence for the presence of universal large-scale organization in the outer layer, with eddies that are larger and stronger than in the closed channel flow. As a result, velocity fluctuations are found to be stronger than in closed channels, throughout the depth. The inner-layer peak of the streamwise velocity variance is observed to grow logarithmically, as in Townsend's attached-eddy model (Townsend, The Structure of Turbulent Shear Flow, 2nd edn, Cambridge University Press, 1976), but saturation of the growth cannot be discarded based on the present data. Although we do not observe a clear outer peak of the streamwise velocity variance, we present substantial evidence that such a peak should emerge at a Reynolds number barely higher than achieved herein. The most striking feature of the flow is the presence of an extended logarithmic layer, with associated Kármán constant asymptoting to $k \approx 0.375$ , in line with observations made in shear-free Couette–Poiseuille flow (Coleman et al., Flow Turbul. Combust., vol. 99, issue 3, 2017, pp. 553–564). The virtual absence of a wake region and of corrective terms to the log law in the present flow leads us to conclude that deviations from the log law observed in internal flows are likely due to the effects of the opposing walls, rather than the presence of a driving pressure gradient.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3