Separating large-scale superposition and modulation in turbulent channels

Author:

Andreolli AndreaORCID,Gatti DavideORCID,Vinuesa RicardoORCID,Örlü RamisORCID,Schlatter PhilippORCID

Abstract

The presence of very-large-scale motions in wall-bounded turbulent flows is commonly associated with their footprint in the form of the superposition of the large scales at the wall and the additional amplitude modulation of small-scale near-wall turbulence. These two phenomena are currently understood to be interlinked, with the superposed large-scale velocity gradient causing the modulation of small-scale activity in the proximity of the wall. To challenge this idea, we devise a numerical strategy that selectively suppresses either superposition or amplitude modulation, in an effort to isolate and study the remaining phenomenon. Results from our direct numerical simulations indicate that a positive correlation between the amplitude of the small scales in the near-wall region and the large-scale signal in the outer flow persists even when near-wall large-scale motions are suppressed – i.e. in absence of superposition. Clearly, this kind of correlation cannot be caused by the near-wall large-scale velocity or its gradients, as both are absent. Conversely, when modulation is blocked, the near-wall footprints of the large scales seem to disappear. This study has been carried out on channel flows at friction Reynolds number $Re_\tau =1000$ in both standard simulation domains and minimal streamwise units (MSUs), where the streamwise fluctuation energy is enhanced. The consistency of the results obtained by the two approaches suggests that MSUs can capture correctly this kind of scale interaction at a much reduced cost.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3