Backscatter of scalar variance in turbulent premixed flames

Author:

Sabelnikov V.A.ORCID,Lipatnikov A.N.ORCID,Nikitin N.V.ORCID,Hernández Pérez F.E.,Im H.G.ORCID

Abstract

To explore the direction of inter-scale transfer of scalar variance between subgrid scale (SGS) and resolved scalar fields, direct numerical simulation data obtained earlier from two complex-chemistry lean hydrogen–air flames are analysed by applying Helmholtz–Hodge decomposition (HHD) to the simulated velocity fields. Computed results show backscatter of scalar (combustion progress variable$c$) variance, i.e. its transfer from SGS to resolved scales, even in a highly turbulent flame characterized by a unity-order Damköhler number and a ratio of Kolmogorov length scale to thermal laminar flame thickness as low as 0.05. Analysis of scalar fluxes associated with the solenoidal and potential velocity fields yielded by HHD shows that the documented backscatter stems primarily from the potential velocity perturbations generated due to dilatation in instantaneous local flames, with the backscatter being substantially promoted by a close alignment of the spatial gradient of mean scalar progress variable and the potential-velocity contribution to the local SGS scalar flux. The alignment is associated with the fact that combustion-induced thermal expansion increases local velocity in the direction of$\boldsymbol {\nabla } c$. These results call for development of SGS models capable of predicting backscatter of scalar variance in turbulent flames in large eddy simulations.

Funder

King Abdullah University of Science and Technology

Chalmers Tekniska Högskola

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3