Inertial focusing of spherical particles in curved microfluidic ducts at moderate Dean numbers

Author:

Harding BrendanORCID,Stokes Yvonne M.ORCID

Abstract

We examine the effect of Dean number on the inertial focusing of spherical particles suspended in flow through curved microfluidic ducts. Previous modelling of particle migration in curved ducts assumed the flow rate was small enough that a leading-order approximation of the background flow with respect to the Dean number produces a reasonable model. Herein, we extend our model to situations involving a moderate Dean number (in the microfluidics context) while the particle Reynolds number remains small. Variations in the Dean number cause a change in the axial velocity profile of the background flow which influences the inertial lift force on a particle. Simultaneously, changes in the cross-sectional velocity components of the background flow directly affect the secondary flow induced drag. In keeping the particle Reynolds number small, we continue to approximate the inertial lift force using a regular perturbation while capturing the subtle effects from the modified background flow. This approach pushes the limits at which a regular perturbation is applicable to provide some insights into how variations in the Dean number influence particle focusing. Our results illustrate that, as the extrema in the background flow move towards the outside of edge of the cross-section with increasing Dean number, we observe a similar shift in the stable equilibria of some, but not all, particle sizes. This might be exploited to enhance the lateral separation of particles by size in a number of practical scenarios.

Funder

Australian Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3