Strong coupling of flow structure and heat transport in liquid metal thermal convection

Author:

Chen Xin-YuanORCID,Xie Yi-ChaoORCID,Yang Juan-ChengORCID,Ni Ming-JiuORCID

Abstract

A typical feature of thermal convection is the formation of large-scale flow (LSF) structures of the order of system size. How this structure affects global heat transport is an important issue in the study of thermal convection. We present an experimental study of the coupling between the flow structure and heat transport in liquid metal convection with different degrees of spatial confinement, characterized by the aspect ratio $\varGamma$ of the convection cell. Combining measurements in two convection cells with $\varGamma =1.0$ and 0.5, the study shows that a large-scale circulation (LSC) transports ${\sim }35\,\%$ more heat than a twisted LSC. It is further found that when the LSF is in the form of the LSC state, the system is in a fully developed turbulence state with a $Nu\sim Ra^{0.29}$ scaling for the heat transport. However, the twisted LSC state with a heat transport scaling of $Nu\sim Ra^{0.37}$ appears when the system is not in the fully developed turbulence state. Bistability is observed when the system evolves from the twisted-LSC-dominated to the LSC-dominated state.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3