Abstract
In this article, we study the behaviour of the Abels–Garcke–Grün Navier–Stokes–Cahn– Hilliard diffuse-interface model for binary-fluid flows, as the diffuse-interface thickness passes to zero. For the diffuse-interface model to approach a classical sharp-interface model in the limit
$\varepsilon \to +0$
, the so-called mobility parameter
$m$
in the diffuse-interface model must scale appropriately with the interface-thickness parameter
$\varepsilon$
. In the literature various scaling relations in the range
$o(1)$
to
$O(\varepsilon ^3)$
have been proposed, but the optimal order to pass to the limit has not been explored previously. Our primary objective is to elucidate this optimal order of the
$m$
–
$\varepsilon$
scaling relation in terms of the rate of convergence of the diffuse-interface solution to the sharp-interface solution. Additionally, we examine how the convergence rate is affected by a sub-optimal parameter scaling. We centre our investigation around the case of an oscillating droplet. To provide reference limit solutions, we derive new analytical expressions for small-amplitude oscillations of a viscous droplet in a viscous ambient fluid in two dimensions. For two distinct modes of oscillation, we probe the sharp-interface limit of the Navier–Stokes–Cahn–Hilliard equations by means of an adaptive finite-element method. The adaptive-refinement procedure enables us to consider diffuse-interface thicknesses that are significantly smaller than other relevant length scales in the droplet-oscillation problem, allowing an exploration of the asymptotic regime.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献