Penetrative convection: heat transport with marginal stability assumption

Author:

Ding ZijingORCID,Ouyang Zhen

Abstract

This paper investigates heat transport in penetrative convection with a marginally stable temporal-horizontal-averaged field or background field. Assuming that the background field is steady and is stabilised by the nonlinear perturbation terms, we obtain an eigenvalue problem with an unknown background temperature $\tau$ by truncating the nonlinear terms. Using a piecewise profile for $\tau$ , we derived an analytical scaling law for heat transport in penetrative convection as $Ra\rightarrow \infty$ : $Nu=(1/8)(1-T_M)^{5/3}Ra^{1/3}$ ( $Nu$ is the Nusselt number; $Ra$ is the Rayleigh number and $T_M$ corresponds to the temperature at which the density is maximal). A conditional lower bound on $Nu$ , under the marginal stability assumption, is then derived from a variational problem. All the solutions to the full system should deliver a higher heat flux than the lower bound if they satisfy the marginal stability assumption. However, data from the present direct numerical simulations and previous optimal steady solutions by Ding & Wu (J. Fluid Mech., vol. 920, 2021, A48) exhibit smaller $Nu$ than the lower bound at large $Ra$ , indicating that these averaged fields are over-stabilised by the nonlinear terms. To incorporate a more physically plausible constraint to bound heat transport, an alternative approach, i.e. the quasilinear approach is invoked which delivers the highest heat transport and agrees well with Veronis's assumption, i.e. $Nu\sim Ra^{1/3}$ (Astrophys. J., vol. 137, 1963, p. 641). Interestingly, the background temperature $\tau$ yielded by the quasilinear approach can be non-unique when instability is subcritical.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3