Isotropically active particle closely fitting in a cylindrical channel: spontaneous motion at small Péclet numbers

Author:

Brandão RodolfoORCID

Abstract

Spontaneous motion due to symmetry breaking has been predicted theoretically for both active droplets and isotropically active particles in an unbounded fluid domain, provided that their intrinsic Péclet number $Pe$ exceeds a critical value. However, due to their inherently small $Pe$ , this phenomenon has yet to be observed experimentally for active particles. In this paper, we demonstrate theoretically that spontaneous motion for an active spherical particle closely fitting in a cylindrical channel is possible at arbitrarily small $Pe$ . Scaling arguments in the limit where the dimensionless clearance is $\epsilon \ll 1$ reveal that when $Pe=O(\epsilon ^{1/2})$ , the confined particle reaches speeds comparable to those achieved in an unbounded fluid at moderate (supercritical) $Pe$ values. We use matched asymptotic expansions in that distinguished limit, where the fluid domain decomposes into several asymptotic regions: a gap region, where the lubrication approximation applies; particle-scale regions, where the concentration is uniform; and far-field regions, where solute transport is one-dimensional. We derive an asymptotic formula for the particle speed, which is a monotonically decreasing function of $\overline {Pe}=Pe/\epsilon ^{1/2}$ and approaches a finite limit as $\overline {Pe}\searrow 0$ . Our results could pave the way for experimental realisations of symmetry-breaking spontaneous motion in active particles.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3