The production of uncertainty in three-dimensional Navier–Stokes turbulence

Author:

Ge JinORCID,Rolland JoranORCID,Vassilicos John ChristosORCID

Abstract

We derive the evolution equation of the average uncertainty energy for periodic/homogeneous incompressible Navier–Stokes turbulence and show that uncertainty is increased by strain rate compression and decreased by strain rate stretching. We use three different direct numerical simulations (DNS) of non-decaying periodic turbulence and identify a similarity regime where (a) the production and dissipation rates of uncertainty grow together in time, (b) the parts of the uncertainty production rate accountable to average strain rate properties on the one hand and fluctuating strain rate properties on the other also grow together in time, (c) the average uncertainty energies along the three different strain rate principal axes remain constant as a ratio of the total average uncertainty energy, (d) the uncertainty energy spectrum's evolution is self-similar if normalised by the uncertainty's average uncertainty energy and characteristic length and (e) the uncertainty production rate is extremely intermittent and skewed towards extreme compression events even though the most likely uncertainty production rate is zero. Properties (a), (b) and (c) imply that the average uncertainty energy grows exponentially in this similarity time range. The Lyapunov exponent depends on both the Kolmogorov time scale and the smallest Eulerian time scale, indicating a dependence on random large-scale sweeping of dissipative eddies. In the two DNS cases of statistically stationary turbulence, this exponential growth is followed by an exponential of exponential growth, which is, in turn, followed by a linear growth in the one DNS case where the Navier–Stokes forcing also produces uncertainty.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3