Abstract
The instability and vortex shedding in the bottom boundary layer caused by internal solitary waves of depression propagating along a shallow pycnocline of a fluid are computed by finite-volume code in two dimensions. The calculated transition to instability agrees very well with laboratory experiments (Carret al.,Phys. Fluids, vol. 20, issue 6, 2008, 06603) but disagrees with existing computations that give a very conservative instability threshold. The instability boundary expressed by the amplitude depends on the depth$d$of the pycnocline divided by the water depth$H$, and decays by a factor of 2.2 when$d/H$is 0.21, and by a factor of 1.6 when$d/H$is 0.16, and the stratification Reynolds number increases by a factor of 32. The instability occurs at moderate amplitude at large scale. The calculated oscillatory bed shear stress is strong in the wave phase and increases with the scale. Its non-dimensional magnitude at stratification Reynolds number 650 000 is comparable to the turbulent stress that can be extracted from field measurements of internal solitary waves of similar nonlinearity, moving along a pycnocline of similar relative depth.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献