Inertial wave attractors in librating cuboids

Author:

Wu KeORCID,Welfert Bruno D.ORCID,Lopez Juan M.ORCID

Abstract

Perturbed rapidly rotating flows are dominated by inertial oscillations, with restricted group velocity directions, due to the restorative nature of the Coriolis force. In containers with some boundaries oblique to the rotation axis, the inertial oscillations may focus upon reflections, whereby their energy increases whilst their wavelength decreases and their trajectories focus onto attractor regions. In a linear inviscid setting, these attractors are Delta-like distributions. The linear inviscid setting is obtained formally by setting both Ekman number ${E}$ (ratio of inertial to viscous time scales) and Rossby number ${Ro}$ (non-dimensional amplitude of the forcing that drives the inertial oscillations) to zero. These settings raise fundamental questions, in particular concerning the nature of energy dissipation in the vanishing Ekman number regime. Here, we consider a simple container geometry, a rectangular cuboid, in which the direction of the rotation axis is oblique to four of its walls, subject to librational forcing (small-amplitude harmonic oscillations of the rotation rate). This geometry allows for accurate and efficient direct numerical simulations of the three-dimensional incompressible Navier–Stokes equations with no-slip boundary conditions using a spectral-Galerkin spatial discretisation along with a third-order temporal discretisation. Solutions with Ekman and Rossby numbers as small as ${E}={Ro}=10^{-8}$ reveal many details of how the inertial oscillations focus, at the libration frequency considered, onto attractors, and how the focusing leads to increased localised nonlinear and dissipative processes as ${E}$ and ${Ro}$ are reduced. Even for extremely small forcing amplitudes, nonlinear effects have important dynamic consequences for the attractors.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inertial wave super-attractor in a truncated elliptic cone;Journal of Fluid Mechanics;2024-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3