Axisymmetric column collapses of bi-frictional granular mixtures

Author:

Man TengORCID,Zhang Zaohui,Huppert Herbert E.,Galindo-Torres Sergio A.ORCID

Abstract

The behaviour of granular column collapses is associated with the dynamics of geohazards, such as debris flows, landslides and pyroclastic flows, yet their underlying physics is still not well understood. In this paper, we explore granular column collapses using the sphero-polyhedral discrete element method, where the system contains two types of particles with different frictional properties. We impose three different mixing ratios and multiple different particle frictional coefficients, which lead to different run-out distances and deposition heights. Based on our previous work and a simple mixture theory, we propose a new effective initial aspect ratio for the bi-frictional granular mixture, which helps unify the description of the relative run-out distances. We analyse the kinematics of bi-frictional granular column collapses and find that deviations from classical power-law scaling in both the dimensionless terminal time and the dimensionless time when the system reaches the maximum kinetic energy may result from differences in the initial solid fraction and initial structures. To clarify the influence of initial states, we further decrease the initial solid fraction of granular column collapses, and propose a trial function to quantitatively describe its influence. Due to the utilization of a simple mixture theory of contact occurrence probability, this study can be associated with the friction-dependent rheology of granular systems and friction-induced granular segregations, and further generalized to applications with multiple species of particles in various natural and engineering mixtures.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference36 articles.

1. A constitutive law for dense granular flows

2. Axisymmetric collapses of granular columns

3. Pournin, L. & Liebling, T.M. 2005 A generalization of distinct element method to tridimensional particles with complex shapes. In Powders and Grains 2005 (ed. R. Garcia-Rojo, H.J. Herrmann & S. McNamara), vol. II, pp. 1375–1378. A.A. Balkema.

4. Numerical simulation of drained triaxial test using 3D discrete element modeling

5. Granular collapse in a fluid: Role of the initial volume fraction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3