Slow motion of a sphere near a sinusoidal surface

Author:

Li GaojinORCID

Abstract

Particle motion near non-plane surfaces can exhibit intricate hydrodynamics, making it an attractive tool for manipulating particles in microfluidic devices. To understand the underlying physics, this work investigates the Stokesian dynamics of a sphere near a sinusoidal surface, using a combination of perturbation analysis and boundary element simulation. The Lorentz reciprocal theorem is employed to solve the particle mobility near a small-amplitude surface. Compared with a plane wall, the curved topography induces additional translation and rotation velocity components, with the direction depending on the location of the sphere and the wavelength of the surface. At a fixed distance from the surface, the longitudinal and vertical mobilities of the sphere are strongly affected by the wavelength and amplitude of the surface, whereas its transverse mobility is only mildly influenced. When a sphere settles perpendicular to a sinusoidal surface, the far-field hydrodynamic effect drives the particle towards the local hill, while the near-field effect attracts the particle to the valley. These results provide valuable insights into the particle motion near surfaces with complex geometry.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Municipality

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3