Similarity for dissipation-scaled wall turbulence

Author:

Tang S.L.ORCID,Antonia R.A.

Abstract

In this paper, we put forward a hypothesis for turbulent kinetic energy, Reynolds stresses and scalar variance in wall-bounded turbulent flows, whereby these quantities, when normalized with the kinematic viscosity, mean turbulent energy dissipation rate and scalar dissipation rate, are independent of the Reynolds and Péclet numbers when they are sufficiently large. In particular, there exist two scaling ranges: (i) an inertial-convective range at sufficiently large distance from the wall over which a $2/3$ power-law scaling emerges for all quantities mentioned above; (ii) a viscous-convective range between the viscous-diffusive and inertial-convective ranges at large Prandtl number over which the normalized scalar variance is constant. The relatively large amount of available wall turbulence data either provides reasonably good support for this hypothesis or at least exhibits a trend that is consistent with the predictions of this hypothesis. The relationship between the proposed scaling and the traditional wall scaling is discussed. Possible ultimate statistical states of wall turbulence are also proposed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation Study of Corridor-Type Partitioned Mixer with Improved Design;Smart Technologies in Urban Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3