Linear-model-based study of the coupling between velocity and temperature fields in compressible turbulent channel flows

Author:

Cheng ChengORCID,Fu LinORCID

Abstract

It is generally believed that the temperature and the velocity fields are highly coupled in compressible wall-bounded turbulence. In the present study, we employ a linear model, i.e. the two-dimensional spectral linear stochastic estimation (SLSE), to study this coupling from the perspective of the multi-scale energy-containing eddies. Particular attention is paid to the relevant statistical characteristics of the temperature field. The connections of the two fields are found to be varied with the wall-normal position in the boundary layer. In a nutshell, their entanglement is strongest in the near-wall region, and only the extreme thermal events cannot be captured by SLSE. In the logarithmic region, only the scales that correspond to the attached eddies and the very large-scale motions (VLSMs) are firmly coupled. The near-wall footprints of the former are organized in an additive manner and fulfil the predictions of the celebrated attached-eddy model. In the outer region, the two fields are linearly coupled only at the scales corresponding to VLSMs. These findings are demonstrated to be insensitive to the Mach number effects and ascribed to the similarity between the momentum and the heat transfer in compressible wall turbulence. It is also shown that it is the Reynolds number rather than Mach number that acts as a key similarity parameter in constructing their coupling. The framework built in the present study may pave a way for investigating the multi-physics coupling in turbulence, and reinforcing our analysing and modelling capability to the interrelated problems.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3