Water surface response to turbulent flow over a backward-facing step

Author:

Luo Q.,Dolcetti G.ORCID,Stoesser T.ORCID,Tait S.

Abstract

The water surface response to subcritical turbulent flow over a backward-facing step (BFS) is studied via high-resolution large-eddy simulation (LES). The LES method is validated first using data of previously reported experiments. The LES-predicted water surface is decomposed into different types of gravity waves as well as turbulence-driven forced waves. Analysis of the LES data reveals the interplay between low-frequency large-scale turbulence structures, which are the result of flow separation from the step and reattachment behind the step, and the dynamics of the water surface. The water surface deformation is mainly the result of freely propagating gravity waves and forced waves, owing to turbulence in the form of rollers and/or hairpin vortices. Gravity waves with zero group velocity define the characteristic spatial and temporal scales of the surface deformations at higher frequencies, while large eddies determine their low-frequency modulation. These deformations are mainly confined in lateral bands that propagate downstream following the advection of the near-surface streamwise vortices (rollers) that are shed from the step. Steeper surface waves are observed in regions of negative perturbation velocity gradient and down-welling, downstream of the larger rollers, and are associated with thin isolated regions of high vorticity near the surface. The investigation of such a complex flow has shown that the decomposition of the water surface fluctuations into its different physical components may be used to identify the dynamics of the underlying flow structure.

Funder

Engineering and Physical Sciences Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3