An alternative to the Navier–Stokes equation based on the conservation of acceleration

Author:

Caltagirone Jean-PaulORCID

Abstract

The derivation of the Navier–Stokes equation in continuum mechanics leads to a number of consequences which are discussed in depth. In spite of its very high representativity of real flows, this equation presents some artefacts due to the whole notion of the continuous medium. An alternative to the Navier–Stokes equation is proposed, based on the conservation of energy per unit mass instead of momentum. The classical inertial frame of reference is replaced by a set of local frames of reference where interactions are treated as cause and effect. Invoking the principle of equivalence between energy and mass, the latter is eliminated from the quantities used in this new formalism. All quantities, variables and physical properties are thus expressed in units of mass. The law of motion is established in the form of the conservation of acceleration, an energy per unit of mass and length. The acceleration is thus written in the form of a Helmholtz–Hodge decomposition, in two terms, the first curl-free and the second divergence-free as a function of two potentials, scalar and vector. Maxwell's idea of federating the laws of electrodynamics and magnetism to establish electromagnetism is taken up here to establish the new law of motion as a nonlinear wave equation. This approach makes it possible to demonstrate that this law is relativistic from the start. The form of the equation of motion in two Lagrangians gives access to symmetries related to the conservation of certain quantities according to Noether's theorem.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3