Abstract
Density segregation of multi-component granular mixtures in a dense, gravity-driven flow over a rough and bumpy periodic chute surface is studied using theory and simulations. An existing theoretical model for predicting the steady-state concentration field of each species in a binary mixture using the forces acting on the particles is generalised for multi-component mixtures in this work. In addition, the rheological model for binary mixtures is also extended to multi-component mixtures. In contrast to the percolation velocity-based empirical segregation models that do not account for the rheology and need prior knowledge of the velocity field, the present approach accounts for the inter-coupling of rheology with segregation. The momentum balance equations are solved, along with the mixture rheological model as well as the multi-component density segregation model, to obtain concentration fields using an iterative numerical method. The theoretical predictions are compared with discrete element method (DEM) simulations for ternary, quaternary and quinary granular mixtures differing in density. The steady-state profiles for the concentration of different species as well as other flow properties predicted from the theory are in excellent agreement with the DEM simulation results for a variety of compositions over a range of inclination angles for different density ratios. Through this work, we take the first essential step towards proposing a generalised particle force-based segregation theory for multi-component mixtures differing in size and/or density.
Funder
Indian Institute of Technology Kanpur
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献