Frictional boundary condition for lattice Boltzmann modelling of dense granular flows

Author:

Yang G.C.ORCID,Huang Y.J.,Lu Y.ORCID,Kwok C.Y.,Sobral Y.D.ORCID,Yao Q.H.

Abstract

Hydrodynamic approaches that treat granular materials as a continuum via the homogenization of discrete flow properties have become viable options for efficient predictions of bulk flow behaviours. However, simplified boundary conditions in computational fluid dynamics are often adopted, which have difficulty in describing the complex stick–slip phenomenon at the boundaries. This paper extends the lattice Boltzmann method for granular flow simulations by incorporating a novel frictional boundary condition. The wall slip velocity is first calculated based on the shear rate limited by the Coulomb friction, followed by the reconstruction of unknown density distribution functions through a modified bounce-back scheme. Validation is performed against a unique plane Couette flow configuration, and the analytical solutions for the flow velocity profile and the wall slip velocity, as functions of the friction coefficient, are reproduced by the numerical model. The transition between no-slip and partial-slip regimes is captured well, but the convergence rate drops from second order to first order when slip occurs. The rheological parameters and the basal friction coefficient are calibrated further against the discrete element simulation of a square granular column collapsing over a horizontal bottom plane. It is found that the calibrated continuum model can predict other granular column collapses with different initial aspect ratios and slope inclination angles, including the basal slip and the complex internal flow structures, without any further adjustments to the model parameters. This highlights the generalization ability of the numerical model, which has a wide range of application in granular flow predictions and controls.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3