Covering convection with a thermal blanket: numerical simulation and stochastic modelling

Author:

Huang Jinzi MacORCID

Abstract

Adding moving boundaries to convective fluids is known to result in non-trivial and surprising dynamics, leading to spectacular geoformations ranging from kilometre-scale karst terrains to planetary-scale plate tectonics. On the one hand, the moving solid alters the surrounding flow field, but on the other hand, the flow modifies the motion and shape of the solid. This leads to a two-way coupling that is significant in the study of fluid–structure interactions and in the understanding of geomorphologies. In this work, we investigate the coupling between a floating plate and the convective fluid below it. Through numerical experiments, we show that the motion of this plate is driven by the flow beneath. However, the flow structure is also modified by the presence of the plate, leading to the ‘thermal blanket’ effect where the trapped heat beneath the plate results in buoyant and upwelling flows that in turn push the plate away. By analysing this two-way coupling between moving boundary and fluid, we are able to capture the dynamical behaviours of this plate through a low-dimensional stochastic model. Geophysically, the thermal blanket effect is believed to drive the continental drift, therefore understanding this mechanism has significance beyond fluid dynamics.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3