Scaling laws for bubble collapse driven by an impulsive shock wave

Author:

Bokman Guillaume T.ORCID,Biasiori-Poulanges LucORCID,Meyer Daniel W.ORCID,Supponen OutiORCID

Abstract

Upon interaction with underwater shock waves, bubbles can collapse and produce high-speed liquid jets in the direction of the wave propagation. This work experimentally investigates the impact of laser-induced underwater impulsive shock waves, i.e. shock waves with a short, finite width, of variable peak pressure on bubbles of radii in the range 10–500 $\mathrm {\mu }$ m. The high-speed visualisations provide new benchmarking of remarkable quality for the validation of numerical simulations and the derivation of scaling laws. The experimental results support scaling laws describing the collapse time and the jet speed of bubbles driven by impulsive shock waves as a function of the impulse provided by the wave. In particular, the collapse time and the jet speed are found to be, respectively, inversely and directly proportional to the time integral of the pressure waveform for bubbles with a collapse time longer than the duration of shock interaction and for shock amplitudes sufficient to trigger a nonlinear bubble collapse. These results provide a criterion for the shock parameters that delimits the jetting and non-jetting behaviour for bubbles having a shock width-to-bubble size ratio smaller than one. Jetting is, however, never observed below a peak pressure value of 14 MPa. This limit, where the pressure becomes insufficient to yield a nonlinear bubble collapse, is likely the result of the time scale of the shock wave passage over the bubble becoming very short with respect to the bubble collapse time scale, resulting in the bubble effectively feeling the shock wave as a spatially uniform change in pressure, and in an (almost) spherical bubble collapse.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3