On the development and analysis of coupled surface–subsurface models of catchments. Part 1. Analysis of dimensions and parameters for UK catchments

Author:

Morawiecki PiotrORCID,Trinh Philippe H.ORCID

Abstract

The objective of this three-part work is to formulate and rigorously analyse a number of reduced mathematical models that are nevertheless capable of describing the hydrology at the scale of a river basin (i.e. catchment). Coupled surface and subsurface flows are considered. In this first part, we identify and analyse the key physical parameters that appear in the governing formulations used within hydrodynamic rainfall–runoff models. Such parameters include those related to catchment dimensions, topography, soil and rock properties, rainfall intensities, Manning's coefficients and river channel dimensions. Despite the abundance of research that has produced data sets describing properties of specific river basins, there have been few studies that have investigated the ensemble of typical scaling of key physical properties; these estimates are needed to perform a proper dimensional analysis of rainfall–runoff models. Therefore, in this work, we perform an extensive analysis of the parameters; our results form a benchmark and provide guidance to practitioners on the typical parameter sizes and interdependencies. Crucially, the analysis is presented in a fashion that can be reproduced and extended by other researchers and, wherever possible, uses publicly available data sets for catchments in the UK.

Funder

Engineering and Physical Sciences Research Council

Centre for Doctoral Training in Statistical Applied Mathematics, University of Bath

Publisher

Cambridge University Press (CUP)

Reference68 articles.

1. Mapping an index of extreme rainfall across the UK;Faulkner;Hydrol. Earth Syst. Sci.,1998

2. Introducing Groundwater

3. Simulation of integrated surface water and ground water systems – model formulation;Yan;JAWRA J. Am. Water Resour. Assoc.,1994

4. Elevation effects on rainfall: a stochastic model;Duckstein;J. Hydrol.,1973

5. EA 2017 Guidance: protect groundwater and prevent groundwater pollution. https://www.gov.uk/government/publications/protect-groundwater-and-prevent-groundwater-pollution/protect-groundwater-and-prevent-groundwater-pollution.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3