Effect of plasma actuator-based control on flow-field and acoustics of supersonic rectangular jets

Author:

Lakshmi Narasimha Prasad AnirudhORCID,Unnikrishnan S.

Abstract

We perform a computational study on the effects of localized arc filament plasma actuator based control on the flow field and acoustics of a supersonic 2:1 aspect ratio rectangular jet. Post validation of the baseline jet, effects of control in the context of noise reduction are studied at experimentally guided forcing parameters, including frequencies $St=0.3, 1.0$ and $St=2.0$ with duty cycles of $20\,\%$ and $50\,\%$ . In general, high-frequency forcing reduces noise in the downstream direction, with the actuator signature appearing mostly in the sideline direction. Here $St=1$ , ${\rm DC}=50\,\%$ yields an optimum balance between peak noise reduction (of ${\sim }1.5$ dB) and actuator tones, with control being most effective on the major axis plane that bisects the shorter edges of the nozzle. Shear layer response to the most effective forcing includes generation of successive arrays of mutually interacting staggered lambda vortices, which eventually energize streamwise vortical elements. Causal mechanisms of noise mitigation are further elucidated as follows. First, the control reduces the energy within the supersonic phase speed regime of peak radiating frequencies by redistributing a part of it into a high-frequency band. Second, it enhances azimuthal percolation of energy into the first and second helical modes at frequencies where noise reduction is seen, thus weakening the radiatively efficient axisymmetric mode. Finally, sound-producing intermittent events in the jet are significantly reduced, thereby minimizing the high-intensity acoustic emissions. This small-perturbation-based control strategy results in only minor variations in the mean flow properties. However, reduced production and enhanced convection attenuate turbulent kinetic energy within the spreading shear layer in the controlled jet.

Funder

Office of Naval Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3