Velocity and temperature scalings leading to compressible laws of the wall

Author:

Huang P.G.,Coleman G.N.ORCID,Spalart P.R.ORCID,Yang X.I.A.ORCID

Abstract

We exploit the similarity between the mean momentum equation and the mean energy equation and derive transformations for mean temperature profiles in compressible wall-bounded flows. In contrast to prior studies that rely on the strong Reynolds analogy and the presumed similarity between the instantaneous and mean velocity and temperature signals, the discussion in this paper involves the Farve-averaged equations only. We establish that the compressible momentum and energy equations can be made identical to their incompressible counterparts under appropriate normalizations and coordinate transformations. Two types of transformations are explored for illustration purposes: Van Driest (VD)-type transformations and semi-local-type or Trettel–Larsson (TL)-type transformations. In our derivations, it becomes clear that VD-type velocity and temperature transformations hold exclusively within the logarithmic layer. On the other hand, TL-type transformations extend their applicability to incorporate wall-damping effects, at least in principle. Each type of transformation serves its distinct purpose and has its applicable range. However, it is noteworthy that while VD-type transformations can be assessed using measurements obtained from laboratory experiments, TL-type transformations necessitate viscosity and density information typically accessible only through numerical simulations. Finally, we justify the omission of the turbulent kinetic energy transfer term, a term that is unclosed, in the energy equation. This omission leads to closed-form temperature transformations that are valid for both adiabatic and isothermal walls.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3