Dynamics of acoustically coupled single- and multi-port jet diffusion flames

Author:

Vargas Andres,Kiani Sarina,Hayrapetyan Arin,Karagozian A.R.ORCID

Abstract

The present experimental study investigated the dynamics of single- and multi-port gaseous jet diffusion flames exposed to acoustic excitation via a standing wave situated in a closed waveguide at atmospheric pressure. High-speed imaging of the oscillatory flame was analysed via proper orthogonal decomposition (POD), revealing distinct signatures in both mode shapes and phase portraits for transitions in the acoustically coupled combustion process. For Reynolds numbers between 20 and 100, and for low to moderate forcing amplitudes, the flame exhibited sustained oscillatory combustion (SOC) that was highly coupled to the acoustic forcing. Frequency analysis of the temporal POD modes accurately recovered the forcing frequency and its higher harmonics. At higher forcing amplitudes, a multi-frequency response was observed, resulting from a combination of the forcing frequency and much lower frequency oscillations due to periodic lift-off and reattachment (PLOR) of the flame, preceding a transition to flame blow-off (BO). For both single- and triple-jet flames, transitions from SOC to PLOR to BO were characterized by significant alterations in primary modal energetic content, deflection and eventual smearing in phase portraits, and the development of additional frequencies in modal spectra, although transitional behaviour for the triple jet flames involved additional complexity in the dynamics due to its structure. These features provide the potential for the development of reduced-order models that can characterize and predict acoustically coupled combustion behaviour.

Funder

Air Force Office of Scientific Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3