Formation and evolution of vortex rings with weak to moderate swirl

Author:

Ortega-Chavez RigobertoORCID,Gan LianORCID,Gaskell Philip H.ORCID

Abstract

The formation of swirling vortex rings and their early time evolution, resulting from the controlled discharge of an incompressible, Newtonian fluid into a stationary equivalent fluid bulk, is explored for weak to moderate swirl number $S \in [0, 1]$ . Two practically realisable inlet conditions are investigated with swirl simultaneously superposed onto a linear momentum discharge; the corresponding circulation based Reynolds number is 7500. The results obtained reveal that for $S > 1/2$ , the addition of swirl promotes the breakdown of the leading primary vortex ring structure, giving rise to the striking feature of significant negative azimuthal vorticity generation in the region surrounding the primary vortex ring core, whose strength scales with ${S}^2$ . Through a nonlinear interaction with the vortex breakdown, the radius of the primary toroidal vortex core is rapidly increased; consequently, the self-induced propagation velocity of the leading ring decreases with $S$ and vortex stretching along the circular primary vortex core increases counteracting viscous diffusion effects. The latter governs the evolution of the peak vorticity intensity and the swirl velocity magnitude in the primary ring core, the circulation growth rate of the primary ring, as well as the vorticity intensity of the trailing jet and hence its stability. This combination of effects leads to an increased dimensionless kinetic energy for the primary ring with increasing $S$ and results in an almost linearly decreasing circulation based formation number, $F$ .

Funder

Engineering and Physical Sciences Research Council

Consejo Nacional de Ciencia y Tecnología

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3