Propagation of capillary waves in two-layer oil–water turbulent flow

Author:

Giamagas GeorgiosORCID,Zonta FrancescoORCID,Roccon AlessioORCID,Soldati AlfredoORCID

Abstract

We study the dynamics of capillary waves at the interface of a two-layer stratified turbulent channel flow. We use a combined pseudo-spectral/phase field method to solve for the turbulent flow in the two liquid layers and to track the dynamics of the liquid–liquid interface. The two liquid layers have same thickness and same density, but different viscosity. We vary the viscosity of the upper layer (two different values) to mimic a stratified oil–water flow. This allows us to study the interplay between inertial, viscous and surface tension forces in the absence of gravity. In the present set-up, waves are naturally forced by turbulence over a broad range of scales, from the larger scales, whose size is of order of the system scale, down to the smaller dissipative scales. After an initial transient, we observe the emergence of a stationary capillary wave regime, which we study by means of temporal and spatial spectra. The computed frequency and wavenumber power spectra of wave elevation are in line with previous experimental findings and can be explained in the frame of the weak wave turbulence theory. Finally, we show that the dispersion relation, which gives the frequency ( $\omega$ ) as a function of the wavenumber ( $k$ ), is in good agreement with the well-established theoretical prediction, $\omega (k) \sim k^{3/2}$ .

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3