Rayleigh–Bénard convection with an immersed floating body

Author:

Frick PeterORCID,Filimonov SergeiORCID,Gavrilov AndreiORCID,Popova ElenaORCID,Sukhanovskii AndreiORCID,Vasiliev AndreiORCID

Abstract

The paper presents the results of an experimental and numerical study of turbulent thermal convection in a rectangular box containing an extended immersed free-floating plate. Varying the values of control parameters, such as Rayleigh number, aspect ratio and vertical position of the plate, provides a wide range of possible modes, from immobile and purely periodic to stochastic. We have shown that stable periodic motions occur when the plate floats close to one of the heat exchangers. An increase in the distance between the plate and the heat exchanger breaks the periodic motion and (at moderate Rayleigh numbers) leads to a pronounced asymmetry, when the plate stays close to one of the walls most of the time, makes rare excursions to the opposite wall and immediately returns. As the Rayleigh number increases, the plate motions from one edge of the box to the other reappear, but always have an irregular character. Regarding the dependence of the system behaviour on the geometry of the box, both lower and upper limits of periodic plate motions were found in the experiments. In the numerical simulations, the upper limit was not achieved – the plate moves quasi-periodically through the chain of vortices of different signs even at the largest aspect ratio being considered. The heat-insulating floating plate provides the spatial and temporal variation of the heat flux and reduces the integral heat flux, but the reduction in heat flux depends significantly on the vertical position of the plate.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3