Role of pressure in the dynamics of intense velocity gradients in turbulent flows

Author:

Buaria DhawalORCID,Pumir AlainORCID

Abstract

We investigate the role of pressure, via its Hessian tensor ${\boldsymbol {H}}$ , on amplification of vorticity and strain-rate and contrast it with other inviscid nonlinear mechanisms. Results are obtained from direct numerical simulations of isotropic turbulence with Taylor-scale Reynolds number in the range 140–1300. Decomposing ${\boldsymbol {H}}$ into local isotropic ( ${\boldsymbol {H}}^{I}$ ) and non-local deviatoric ( ${\boldsymbol {H}}^{D}$ ) components reveals that ${\boldsymbol {H}}^{I}$ depletes vortex stretching, whereas ${\boldsymbol {H}}^{D}$ enables it, with the former slightly stronger. The resulting inhibition is significantly weaker than the nonlinear mechanism which always enables vortex stretching. However, in regions of intense vorticity, identified using conditional statistics, contribution from ${\boldsymbol {H}}$ prevails over nonlinearity, leading to overall depletion of vortex stretching. We also observe near-perfect alignment between vorticity and the eigenvector of ${\boldsymbol {H}}$ corresponding to the smallest eigenvalue, which conforms with well-known vortex-tubes. We discuss the connection between this depletion, essentially due to (local) ${\boldsymbol {H}}^{I}$ , and recently identified self-attenuation mechanism (Buaria et al., Nat. Commun., vol. 11, 2020, p. 5852), whereby intense vorticity is locally attenuated through inviscid effects. In contrast, the influence of ${\boldsymbol {H}}$ on strain-amplification is weak. It opposes strain self-amplification, together with vortex stretching, but its effect is much weaker than vortex stretching. Correspondingly, the eigenvectors of strain and ${\boldsymbol {H}}$ do not exhibit any strong alignments. For all results, the dependence on Reynolds number is very weak. In addition to the fundamental insights, our work provides useful data and validation benchmarks for future modelling endeavours, for instance in Lagrangian modelling of velocity gradient dynamics, where conditional ${\boldsymbol {H}}$ is explicitly modelled.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiscale Velocity Gradients in Turbulence;Annual Review of Fluid Mechanics;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3