Reduced-order variational mode decomposition to reveal transient and non-stationary dynamics in fluid flows

Author:

Liao Zi-MoORCID,Zhao ZhiyeORCID,Chen Liang-Bing,Wan Zhen-HuaORCID,Liu Nan-ShengORCID,Lu Xi-YunORCID

Abstract

A novel data-driven modal analysis method, reduced-order variational mode decomposition (RVMD), is proposed, inspired by the Hilbert–Huang transform and variational mode decomposition (VMD), to resolve transient or statistically non-stationary flow dynamics. First, the form of RVMD modes (referred to as an ‘elementary low-order dynamic process’, ELD) is constructed by combining low-order representation and the idea of intrinsic mode function, which enables the computed modes to characterize the non-stationary properties of space–time fluid flows. Then, the RVMD algorithm is designed based on VMD to achieve a low-redundant adaptive extraction of ELDs in flow data, with the modes computed by solving an elaborate optimization problem. Further, a combination of RVMD and Hilbert spectral analysis leads to a modal-based time-frequency analysis framework in the Hilbert view, providing a potentially powerful tool to discover, quantify and analyse the transient and non-stationary dynamics in complex flow problems. To provide a comprehensive evaluation, the computational cost and parameter dependence of RVMD are discussed, as well as the relations between RVMD and some classic modal decomposition methods. Finally, the virtues and utility of RVMD and the modal-based time-frequency analysis framework are well demonstrated via two canonical problems: the transient cylinder wake and the planar supersonic screeching jet.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3