On the shapes of liquid curtains flowing from a non-vertical slot

Author:

Della Pia AlessandroORCID,Antoniades Michael G.ORCID,Ioannidis Eleni S.ORCID,Wejko Zoe A.ORCID,Barlow Nathaniel S.ORCID,Chiatto MatteoORCID,Weinstein Steven J.ORCID,de Luca LuigiORCID

Abstract

A theoretical and experimental investigation of two-dimensional (2-D) liquid curtains (gravitationally thinning liquid sheets) is provided under conditions where the curtain issues from a thin slot whose centreline is inclined with respect to the vertical. This analysis is motivated in part by recent works where it has been proposed that oblique liquid curtains (those exiting a non-vertical slot) may bend upwards against gravity when the relevant Weber number at the slot is less than unity ( $We <1$ ). By contrast, Weinstein et al. (J. Fluid Mech., vol. 876, 2019, R3) have proposed that such $We<1$ curtains must be vertical and downward falling regardless of the inclination of the slot. Under low-Reynolds-number ( $Re$ ) conditions typical of liquid film coating operations, our experiments show that the curtain shape follows the classic ballistic (parabolic) trajectory in the supercritical regime ( $We>1$ ). In subcritical conditions ( $We<1$ ), experiments show that the downward-falling curtain is vertical except in a relatively small region near the slot, where the combined effects of viscosity and surface tension induce the so-called teapot effect. These experimental results are confirmed by 2-D numerical simulations, which predict the curtain behaviour ranging from highly viscous ( $Re = O(1)$ ) to nearly inviscid conditions. The one-dimensional (1-D) inviscid model of Weinstein et al. is recast in a different form to facilitate comparisons with the 2-D model, and 1-D and 2-D results agree favourably for supercritical and subcritical conditions. Despite the large parameter range explored, we have found no evidence that upward-bending curtains exist in an oblique configuration.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3