Rheology of dense suspensions of ideally conductive particles in an electric field

Author:

Mirfendereski SiamakORCID,Park Jae SungORCID

Abstract

The rheological behaviour of dense suspensions of ideally conductive particles in the presence of both electric field and shear flow is studied using large-scale numerical simulations. Under the action of an electric field, these particles are known to undergo dipolophoresis (DIP), which is the combination of two nonlinear electrokinetic phenomena: induced-charge electrophoresis (ICEP) and dielectrophoresis (DEP). For ideally conductive particles, ICEP is predominant over DEP, resulting in transient pairing dynamics. The shear viscosity and first and second normal stress differences $N_1$ and $N_2$ of such suspensions are examined over a range of volume fractions $15\,\% \leq \phi \leq 50\,\%$ as a function of Mason number $Mn$ , which measures the relative importance of viscous shear stress over electrokinetic-driven stress. For $Mn < 1$ or low shear rates, the DIP is shown to dominate the dynamics, resulting in a relatively low-viscosity state. The positive $N_1$ and negative $N_2$ are observed at $\phi < 30\,\%$ , which is similar to Brownian suspensions, while their signs are reversed at $\phi \ge 30\,\%$ . For $Mn \ge 1$ , the shear thickening starts to arise at $\phi \ge 30\,\%$ , and an almost five-fold increase in viscosity occurs at $\phi = 50\,\%$ . Both $N_1$ and $N_2$ are negative for $Mn \gg 1$ at all volume fractions considered. We illuminate the transition in rheological behaviours from DIP to shear dominance around $Mn = 1$ in connection to suspension microstructure and dynamics. Lastly, our findings reveal the potential use of nonlinear electrokinetics as a means of active rheology control for such suspensions.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference87 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3