A scaling law for the length of granular jumps down smooth inclines

Author:

Escobar AndrésORCID,Guillard François,Einav Itai,Faug ThierryORCID

Abstract

Granular jumps commonly develop during granular flows over complex topographies or when hitting retaining structures. While this process has been well-studied for hydraulic flows, in granular flows such jumps remain to be fully explored, given the role of interparticle friction. Predicting the length of granular jumps is a challenging question, relevant to the design of protection dams against avalanches. In this study, we investigate the canonical case of standing jumps formed in granular flows down smooth inclines using extensive numerical simulations based on the discrete element method. We consider both two- and three-dimensional configurations and vary the chute bottom friction to account for the crucial interplay between the sliding along the smooth bottom and the shearing across the granular bulk above. By doing so, we derived a robust scaling law for the jump length that is valid over a wide range of Froude numbers and takes into account the influence of the packing density. The findings have potential implications on a number of situations encountered in industry as well as problems associated with natural hazards.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference28 articles.

1. Multiple solutions for granular flow over a smooth two-dimensional bump

2. On dense granular flows down flat frictional inclines

3. Smooth-particle phase stability with generalized density-dependent potentials

4. On dense granular flows

5. Johannesson, T. , Gauer, P. , Issler, P. & Lied, K. 2009 The design of avalanche protection dams. Recent practical and theoretical developments. European Commission Directorate-General.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3