Daughter oil droplet entrainment by oil-coated bubble bursting

Author:

Yang ZhengyuORCID,Ji BingqiangORCID,Feng JieORCID

Abstract

Compound bubbles with a liquid coating in another continuous immiscible bulk phase are ubiquitous in a wide range of natural and industrial processes. Their formation, rise and ultimate bursting at the air–liquid interface play crucial roles in the transport and fate of natural organic matter and contaminants. However, the dynamics of compound bubbles has not received considerable attention until recently. Here, inspired by our previous work (Yang et al., Nat. Phys., vol. 19, 2023, pp. 884–890), we investigate the entrainment of daughter oil droplets in bulk water produced by a bursting oil-coated bubble. We document that the size of the entrained daughter oil droplet is affected by the oil coating fraction and the bulk liquid properties. We rationalize this observation by balancing the viscous force exerted by the extensional flow produced by bubble bursting with the capillary force resisting the deformation of the oil coating, and considering the subsequent end-pinching process which finally entrains the daughter oil droplets. We propose a scaling analysis for the daughter oil droplet size that well captures the experimental results for a wide range of oil coating fractions and Ohnesorge numbers of the bulk liquid. In addition, we discuss the non-monotonic variation of daughter droplet size with the Ohnesorge number, and show the eventual absence of daughter droplets because of the strong viscous effect in the high-Ohnesorge-number regime. Our findings may advance the fundamental understanding of compound bubble bursting and provide guidance and modelling constraints for bubble-mediated contaminant transport in liquids.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3