Abstract
When a fast droplet impacts a pool of the same fluid, a thin ejecta sheet that dominates the early-time dynamics emerges within the first few microseconds. Fluid and impact properties are known to affect its evolution; we experimentally reveal that the pool depth is a critical factor too. Whilst ejecta sheets can remain separate and subsequently fold inwards on deeper pools, they instead develop into outward-propagating lamellae on sufficiently shallow pools, undergoing a transition that we delineate by comprehensively varying impact inertia and pool depth. Aided by matching direct numerical simulation results, we find that this transition stems from a confinement effect of the pool base on the impact-induced pressure, which stretches the ejecta sheet to restrict flow into it from the droplet on sufficiently shallow pools. This insight is also applied to elucidate the well-known transition due to Reynolds number.
Funder
Engineering and Physical Sciences Research Council
Royal Society
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献