Scaling of turbulent velocity structure functions: plausibility constraints

Author:

Djenidi L.ORCID,Antonia R.A.,Tang S.L.ORCID

Abstract

The $n$ th-order velocity structure function $S_n$ in homogeneous isotropic turbulence is usually represented by $S_n \sim r^{\zeta _n}$ , where the spatial separation $r$ lies within the inertial range. The first prediction for $\zeta _n$ (i.e. $\zeta _3=n/3$ ) was proposed by Kolmogorov (Dokl. Akad. Nauk SSSR, vol. 30, 1941) using a dimensional argument. Subsequently, starting with Kolmogorov (J. Fluid Mech., vol. 13, 1962, pp. 82–85), models for the intermittency of the turbulent energy dissipation have predicted values of $\zeta _n$ that, except for $n=3$ , differ from $n/3$ . In order to assess differences between predictions of $\zeta _n$ , we use the Hölder inequality to derive exact relations, denoted plausibility constraints. We first derive the constraint $(p_3-p_1)\zeta _{2p_2} = (p_3 -p_2)\zeta _{2p_1} +(p_2-p_1)\zeta _{2p_3}$ between the exponents $\zeta _{2p}$ , where $p_1 \leq p_2 \leq p_3$ are any three positive numbers. It is further shown that this relation leads to $\zeta _{2p} = p \zeta _2$ . It is also shown that the relation $\zeta _n=n/3$ , which complies with $\zeta _{2p} = p \zeta _2$ , can be derived from constraints imposed on $\zeta _n$ using the Cauchy–Schwarz inequality, a special case of the Hölder inequality. These results show that while the intermittency of $\epsilon$ , which is not ignored in the present analysis, is not incompatible with the plausible relation $\zeta _n=n/3$ , the prediction $\zeta _n=n/3 +\alpha _n$ is not plausible, unless $\alpha _n =0$ .

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference55 articles.

1. Asymptotic scaling in turbulent pipe flow;McKeon;Phil. Trans. R. Soc. A,2007

2. Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives;Van Atta;Phys. Fluids,1980

3. Turbulent flows and intermittency in laboratory experiments;Anselmet;Planet. Space Sci.,2001

4. Multiscale velocity correlations in turbulence and Burgers turbulence: fusion rules, Markov processes in scale, and multifractal predictions;Friedrich;Phys. Rev. E,2018

5. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number;Kolmogorov;Dokl. Akad. Nauk SSSR,1941

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dual scaling and the n-thirds law in grid turbulence;Journal of Fluid Mechanics;2023-11-16

2. Laminar to turbulent transition in terms of information theory;Physica A: Statistical Mechanics and its Applications;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3