On vortex-sheet evolution beyond singularity formation

Author:

Pullin D.I.ORCID,Shen N.ORCID

Abstract

We consider the evolution of a spatially periodic, perturbed vortex sheet for small times after the formation of a curvature singularity at time $t=t_c$ as demonstrated by Moore (Proc. R. Soc. Lond. A, vol. 365, issue 1720, 1979, pp. 105–119). The Moore analysis is extended to provide the small-amplitude, full-sheet structure at $t=t_c$ for a general single-mode initial condition in terms of polylogarithmic functions, from which its asymptotic form near the singular point is determined. This defines an intermediate evolution problem for which the leading-order, and most singular, approximation is solved as a Taylor-series expansion in $\tau = t-t_c$ , where coefficients are calculated by repeated differentiation of the defining Birkhoff–Rott (BR) equation. The first few terms are in good agreement with numerical calculation based on the full-sheet solution. The series is summed, providing an analytic continuation which shows sheet rupture at circulation $\varGamma =0^+$ , $\tau >0^+$ , but with non-physical features owing to the absence of end-tip sheet roll up. This is corrected by constructing an inner solution with $\varGamma < \tau$ , as a perturbed similarity form with small parameter $\tau ^{1/2}$ . Numerical solutions of both the inner, nonlinear zeroth-order and first-order linear BR equations are obtained whose outer limits match the intermediate solution. The composite solution shows sheet tearing at $\tau =0^+$ into two separate, rolled up algebraic spirals near the central singular point. Branch separation distance scales as $\tau$ with a non-local, $\tau ^{3/2}$ correction. Properties of the intermediate and inner solutions are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3