Turbulent–turbulent transient concept in pulsating flows

Author:

Taylor P.S.ORCID,Seddighi M.ORCID

Abstract

The turbulence behaviour of current-dominated pulsating flows has been investigated. Direct numerical simulations have been carried out for Stokes lengths over a range of $l_s^+=5\unicode{x2013}26$ , and amplitudes spanning 90 % of the current-dominated regime, about a mean flow of $\overline {Re}=6275$ . The results show that the turbulence response in intermediate and low-frequency pulsations is governed by a multistage turbulent–turbulent transition process, which bears a strong similarity to the multistage response of non-periodic acceleration. During the early acceleration period, the flow enters a pretransition stage, in which a new laminar perturbation boundary layer forms at the wall, and the streamwise velocity streaks are stretched. If the low-speed streaks destabilise prior to the deceleration period, then the flow enters a transition stage in which the perturbation boundary layer undergoes a bypass-like transition process. A unique feature of pulsating flows is the ongoing mechanism of turbulence decay, which initiates during the deceleration period and constitutes the main transient turbulence mechanism for much of the cycle. For high-frequency pulsations, the perturbation boundary layer fails to reach the pretransition stage prior to the deceleration period. Instead, the flow alternates between two inertial stages which are characterised by two layers of amplified viscous force; one growing at the wall, and one detached and moving towards the core.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3