Direct numerical simulation-based vibroacoustic response of plates excited by turbulent wall-pressure fluctuations

Author:

Prajapati Soham,Anantharamu Sreevatsa,Mahesh KrishnanORCID

Abstract

We use direct numerical simulation to study the vibroacoustic response of an elastic plate in a turbulent channel at $Re_\tau$ of 180 and 400 for three plate boundary conditions and two materials – synthetic rubber and stainless steel. The fluid–structure–acoustic coupling is assumed to be one-way coupled, i.e. the fluid affects the solid and not vice versa, and the solid affects the acoustic medium and not vice versa. The wall pressure consists of intermittent large-amplitude fluctuations associated with the near-wall, burst-sweep cycle of events. For stainless steel plates, displacement has similar large-amplitude peak events due to comparable time scales of plate vibration and near-wall eddies. For synthetic rubber plates, large-amplitude displacement fluctuations are observed only near clamped or simply supported boundaries. Away from boundaries, plate displacement resembles an amplitude-modulated wave, and no large-amplitude events are observed. We discuss displacement and acoustic pressure spectra over different frequency ranges. For frequencies much smaller than the first natural frequency, the product of plate-averaged displacement spectrum and bending stiffness squared collapses with Reynolds number and plate material in outer units. At high frequencies, displacement and acoustic pressure spectra scale better in inner units, and the scaling depends on the type of damping. For synthetic rubber plates, the spectra display an overlap region that collapses in both outer and inner units. Soft plate deformation displays a range of length scales. However, stiff plate deformation does not exhibit a similar range of scales and resembles plate mode shapes. The soft plate has two distinct deformation structures. Low-speed, large deformation structures with slow formation/break-up time scales are found away from boundaries. High-speed, small deformation structures with fast formation/break-up time scales formed due to boundary reflections exist near the boundaries.

Funder

Office of Naval Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3