Static and dynamic stability of pendant drops

Author:

Zhang FeiORCID,Zhou XinpingORCID

Abstract

Despite the widespread occurrence of pendant drops in nature, there is still a lack of combined studies on their dynamic and static stability. This study focuses on the dynamic and static stability of elongated drops with either a free or pinned contact line on a plane. We first examine static stability for both axisymmetric and non-axisymmetric perturbations subject to volume or pressure constraints. The stability limits for volume and pressure disturbances (axisymmetric) correspond to the maximum volume and pressure of the drops, respectively. Drops with free contact lines are marginally stable to non-axisymmetric perturbations because of their horizontal translational invariance, whereas pinned drops are stable. The linear dynamic stability is then investigated numerically through a boundary element model, restricted to volume disturbances. Results show that when the stability limit is reached, the first zonal mode has a zero frequency, suggesting that the thresholds for static and dynamic stability are essentially equivalent. Furthermore, natural frequencies experience sharp changes as the stability limit is approached. Another zero frequency mode associated with the horizontal motion of the centre of mass is also revealed by the numerical results, reflecting the horizontal translational invariance of drops with free contact lines. Finally, the frequency spectrum modified by gravity is explored, resulting in the identification of five gravity-induced frequency shift patterns. The frequency shifts break the spectral degeneracy for hemispherical drops with free contact lines, leading to various spectral orderings according to polar and azimuthal wavenumbers.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3