Abstract
Numerical simulations of the interaction of internal solitary waves (ISWs) of opposite polarity are conducted by solving the incompressible Euler equations under the Boussinesq approximation. A double-pycnocline stratification is used. A method to determine when ISWs of both polarities exist is also presented. The simulations confirm previous work that the interaction of waves of the same polarity are soliton-like; however, here it is shown that when a fast ISW with the same polarity as a Korteweg–de Vries (KdV) solitary wave catches up and interacts with a slower ISW of opposite polarity, the interaction can be far from soliton-like. The energy in the fast KdV-polarity wave can increase by more than a factor of 5 while the energy in the slower negative-KdV-polarity wave can decrease by 50 %. Large trailing wave trains may be generated and in some cases multiple ISWs with KdV polarity may be formed by the interaction.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献