Rejecting the New Statistical Solution to the Generality Problem

Author:

Tolly JeffreyORCID

Abstract

AbstractThe generality problem is one of the most pressing challenges for process reliabilism about justification. Thus far, one of the more promising responses is James Beebe's tri-level statistical solution. Despite the initial plausibility of Beebe's approach, the tri-level statistical solution has been shown to generate implausible justification verdicts on a variety of cases. Recently, Samuel Kampa has offered a new statistical solution to the generality problem, which he argues can overcome the challenges that undermined Beebe's original statistical solution. However, there's good reason to believe that Kampa is mistaken. In this paper, I show that Kampa's new statistical solution faces problems that are no less serious than the original objections to Beebe's solution. Depending on how we interpret Kampa's proposal, the new statistical solution either types belief-forming processes far too narrowly, or the new statistical solution fails to clarify the epistemic implications of reliabilism altogether. Either way, the new statistical solution fails to make substantive progress towards solving the generality problem.

Publisher

Cambridge University Press (CUP)

Subject

History and Philosophy of Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Remembering requires no reliability;Philosophical Studies;2023-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3