MAKER–BREAKER GAMES ON AND

Author:

BOWLER NATHAN,GUT FLORIANORCID,JOÓ ATTILAORCID,PITZ MAX

Abstract

Abstract We investigate Maker–Breaker games on graphs of size $\aleph _1$ in which Maker’s goal is to build a copy of the host graph. We establish a firm dependence of the outcome of the game on the axiomatic framework. Relating to this, we prove that there is a winning strategy for Maker in the $K_{\omega ,\omega _1}$ -game under ZFC+MA+ $\neg $ CH and a winning strategy for Breaker under ZFC+CH. We prove a similar result for the $K_{\omega _1}$ -game. Here, Maker has a winning strategy under ZF+DC+AD, while Breaker has one under ZFC+CH again.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference13 articles.

1. A Solution of the Shannon Switching Game

2. Sur un problème de la théorie des relations;Sierpiński;Annali della Scuola Normale Superiore di Pisa—Classe di Scienze,1933

3. Bases in Infinite Matroids

4. On a generalization of the game go-moku, II;Csirmaz;Studia Scientiarum Mathematicarum Hungarica,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3