CONSERVATION THEOREMS ON SEMI-CLASSICAL ARITHMETIC

Author:

FUJIWARA MAKOTOORCID,KURAHASHI TAISHIORCID

Abstract

Abstract We systematically study conservation theorems on theories of semi-classical arithmetic, which lie in-between classical arithmetic $\mathsf {PA}$ and intuitionistic arithmetic $\mathsf {HA}$ . Using a generalized negative translation, we first provide a structured proof of the fact that $\mathsf {PA}$ is $\Pi _{k+2}$ -conservative over $\mathsf {HA} + {\Sigma _k}\text {-}\mathrm {LEM}$ where ${\Sigma _k}\text {-}\mathrm {LEM}$ is the axiom scheme of the law-of-excluded-middle restricted to formulas in $\Sigma _k$ . In addition, we show that this conservation theorem is optimal in the sense that for any semi-classical arithmetic T, if $\mathsf {PA}$ is $\Pi _{k+2}$ -conservative over T, then ${T}$ proves ${\Sigma _k}\text {-}\mathrm {LEM}$ . In the same manner, we also characterize conservation theorems for other well-studied classes of formulas by fragments of classical axioms or rules. This reveals the entire structure of conservation theorems with respect to the arithmetical hierarchy of classical principles.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference14 articles.

1. Logic and Structure

2. [11] Kaye, R. , Paris, J. , and Dimitracopoulos, C. , On parameter free induction schemas, this Journal, vol. 53 (1988), no. 4, pp. 1082–1097.

3. [5] Fujiwara, M. , Ishihara, H. , Nemoto, T. , Suzuki, N.-Y. , and Yokoyama, K. , Extended frames and separations of logical principles, submitted, 2021. Available at https://researchmap.jp/makotofujiwara/misc/30348506.

4. [6] Fujiwara, M. and Kurahashi, T. , Refining the arithmetical hierarchy of classical principles, submitted, 2020. Available at https://arxiv.org/abs/2010.11527.

5. Classically and intuitionistically provably recursive functions

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3