ALMOST THEOREMS OF HYPERARITHMETIC ANALYSIS

Author:

SHORE RICHARD A.ORCID

Abstract

Abstract Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in the realms of reverse mathematics and recursion theoretic complexity. They lie above all the fixed (recursive) iterations of the Turing Jump but below ATR $_{0}$ (and so $\Pi _{1}^{1}$ -CA $_{0}$ or the hyperjump). There is a long history of proof theoretic principles which are THAs. Until Barnes, Goh, and Shore [ta] revealed an array of theorems in graph theory living in this neighborhood, there was only one mathematical denizen. In this paper we introduce a new neighborhood of theorems which are almost theorems of hyperarithmetic analysis (ATHAs). When combined with ACA $_{0}$ they are THAs but on their own they are very weak. We generalize several conservativity classes ( $\Pi _{1}^{1}$ , r- $\Pi _{2}^{1}$ , and Tanaka) and show that all our examples (and many others) are conservative over RCA $_{0}$ in all these senses and weak in other recursion theoretic ways as well. We provide denizens, both mathematical and logical. These results answer a question raised by Hirschfeldt and reported in Montalbán [2011] by providing a long list of pairs of principles one of which is very weak over RCA $_{0}$ but over ACA $_{0}$ is equivalent to the other which may be strong (THA) or very strong going up a standard hierarchy and at the end being stronger than full second order arithmetic.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference34 articles.

1. [18] Kihara, T. , Degree structures of Mass problems & formal systems of Ramsey-type theorems , Master’s thesis, Tohoku University, 2009.

2. [24] Neeman, I. , Necessary uses of ${\varSigma}_1^1$ induction in a reversal, this Journal, vol. 76 (2011), pp. 561–574.

3. Edge-disjoint double rays in infinite graphs: A Halin type result

4. [1] Barnes, J. , Goh, J. L. , and Shore, R. A. , Halin’s infinite ray theorems: Complexity and reverse mathematics, to appear.

5. Degrees of Unsolvability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3