Multiple Herbicide–Resistant Junglerice (Echinochloa colona): Identification of Genes Potentially Involved in Resistance through Differential Gene Expression Analysis

Author:

Wright Alice A.,Rodriguez-Carres Marianela,Sasidharan Rajkumar,Koski Liisa,Peterson Daniel G.,Nandula Vijay K.,Ray Jeffery D.,Bond Jason A.,Shaw David R.

Abstract

AbstractHerbicide resistance, and in particular multiple-herbicide resistance, poses an ever-increasing threat to food security. A biotype of junglerice [Echinochloa colona (L.) Link] with resistance to four herbicides, imazamox, fenoxaprop-P-ethyl, quinclorac, and propanil, each representing a different mechanism of action, was identified in Sunflower County, MS. Dose responses were performed on the resistant biotype and a biotype sensitive to all four herbicides to determine the level of resistance. Application of a cytochrome P450 inhibitor, malathion, with the herbicides imazamox and quinclorac resulted in increased susceptibility in the resistant biotype. Differential gene expression analysis of resistant and sensitive plants revealed that 170 transcripts were upregulated in resistant plants relative to sensitive plants and 160 transcripts were upregulated in sensitive plants. In addition, 507 transcripts were only expressed in resistant plants and 562 only in sensitive plants. A subset of these transcripts were investigated further using quantitative PCR (qPCR) to compare gene expression in resistant plants with expression in additional sensitive biotypes. The qPCR analysis identified two transcripts, a kinase and a glutathione S-transferase that were significantly upregulated in resistant plants compared with the sensitive plants. A third transcript, encoding an F-box protein, was downregulated in the resistant plants relative to the sensitive plants. As no cytochrome P450s were differentially expressed between the resistant and sensitive plants, a single-nucleotide polymorphism analysis was performed, revealing several nonsynonymous point mutations of interest. These candidate genes will require further study to elucidate the resistance mechanisms present in the resistant biotype.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3